CGRP activates renal pelvic substance P receptors by retarding substance P metabolism.
نویسندگان
چکیده
Substance P and calcitonin gene-related peptide (CGRP) are colocalized in renal pelvic sensory nerves. Increasing renal pelvic pressure results in an increase in afferent renal nerve activity that is blocked by a substance P receptor antagonist but not by a CGRP receptor antagonist. CGRP potentiates the effects of substance P by preventing the metabolism of substance P. Therefore, we examined whether CGRP enhanced the afferent renal nerve activity responses to substance P and increased renal pelvic pressure, a stimulus known to increase substance P release. Combined administration of substance P and CGRP into the renal pelvis resulted in an increase in afferent renal nerve activity (1392+/-217%. s; area under the curve of afferent renal nerve activity versus time) that was greater (P<0.01) than that produced by substance P (620+/-156%. s) or CGRP (297+/-96%. s) alone. Likewise, CGRP enhanced the afferent renal nerve activity response to increased renal pelvic pressure. During renal pelvic administration of the neutral endopeptidase inhibitor thiorphan, the afferent renal nerve activity response to substance P plus CGRP was similar to that produced by either neuropeptide alone. Because these studies suggested that CGRP potentiated the afferent renal nerve activity responses to substance P, we examined whether the afferent renal nerve activity response to CGRP was blocked by a substance P receptor antagonist, RP67580. RP67580 blocked the afferent renal nerve activity response to CGRP by 85+/-12% (P<0.02). We conclude that CGRP activates renal pelvic sensory nerves by retarding the metabolism of substance P, thereby increasing the amount of substance P available for stimulation of substance P receptors.
منابع مشابه
Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation.
UNLABELLED Nerve terminals containing neuronal nitric oxide synthase (nNOS) are localized in the renal pelvic wall where the sensory nerves containing substance P and calcitonin gene-related peptide (CGRP) are found. We examined whether nNOS is colocalized with substance P and CGRP. All renal pelvic nerve fibers that contained nNOS-like immunoreactivity (-LI) also contained substance P-LI and C...
متن کاملEarly potential impairment of renal sensory nerves in streptozotocin-induced diabetic rats: role of neurokinin receptors.
BACKGROUND Electrophysiological studies in the mammalian kidney have identified two major classes of sensory receptors of the afferent renal nerves; chemoreceptors (CR) and mechanoreceptors (MR). The localization of calcitonin gene-related peptide (CGRP) and substance P (SP) in these renal pelvic sensory neurons provides an anatomical basis for a possible functional interaction between the two ...
متن کاملAntinociceptive effects of dexmedetomidine via spinal substance P and CGRP
The aim of this study was to examine the role played by substance P and calcitonin gene-related peptide (CGRP) within the dorsal horn of the spinal cord in engagement of antinociception evoked by dexmedetomidine (DEX). Paw withdrawal threshold (PWT) to mechanical stimulation was determined after chronic intrathecal infusion of DEX and enzyme-linked immunosorbent assay (ELISA) was employed to ex...
متن کاملActivation of EP4 receptors contributes to prostaglandin E2-mediated stimulation of renal sensory nerves.
Induction of cyclooxygenase-2 (COX-2) in the renal pelvic wall increases prostaglandin E(2) (PGE(2)) leading to stimulation of cAMP production, which results in substance P (SP) release and activation of renal mechanosensory nerves. The subtype of PGE receptors involved, EP2 and/or EP4, was studied by immunohistochemistry and renal pelvic administration of agonists and antagonists of EP2 and EP...
متن کاملRenal substance P-containing neurons and substance P receptors impaired in hypertension.
In normotensive rats, increased renal pelvic pressure stimulates the release of prostaglandin E and substance P, which in turn leads to an increase in afferent renal nerve activity (ARNA) and a contralateral natriuresis, a contralateral inhibitory renorenal reflex. In spontaneously hypertensive rats (SHR), increasing renal pelvic pressure failed to increase afferent renal nerve activity. The in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 33 1 Pt 2 شماره
صفحات -
تاریخ انتشار 1999